US ERA ARCHIVE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, D.C. 20460

MEMORANDUM

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

229696

SUBJECT: Data review for Isoxaflutole (D222982)

FROM:

Renée Costello, Biologist Janes with

Environmental Risk Characterization Branch

Environmental Fate and Effects Division (7507C)

THRU:

Elizabeth Leovey, Chief

Environmental Risk Characterization Branch

Environmental Fate and Effects Division (7507C)

TO:

Joanne Miller, PM 23

Registration Division (7505C)

The following is a summary of data reviewed for isoxaflutole, the DERs are attached to this memo:

GDLN No.	Test Material	MRID	Classification
123-2	RPA 203328	439048-26	Core
72-4	RPA 201772	439048-21	Core
72-1	RPA 202248	439048-22	Core
72-2	RPA 202248	439048-23	Core
72-3	RPA 202248	439048-24	Core
72-1	RPA 203328	439048-25	Core

If there are any questions please contact Renée Costello at 305-5294.

MRID No. 439048-26

DATA EVALUATION RECORD ALGAE OR DIATOM EC50 TEST GUIDELINE 123-2 (TIER II)

CHEMICAL: Isoxaflutole 1. PC Code No.: 123000

TEST MATERIAL: RPA 203328 Purity: 98.9% 2.

3. CITATION:

> James R. Hoberg Authors:

Title: RPA 203328 - 5-Day Toxicity to the

Freshwater Green Alga Selenastrum

capricornutum

Study Completion Date: November 22, 1995

> Laboratory: Springborn Laboratories, Inc., Wareham,

Rhône-Poulenc Secteur Agro, Sophia Sponsor:

Antipolis, France

95-11-6172 <u>Laboratory Report ID:</u>

> DP Barcode: D222982 MRID No.: 439048-26

REVIEWED BY: Max Feken, M.S., Environmental Toxicologist,

by Felle

KBN Engineering and Applied Sciences, Inc.

Signature:

APPROVED BY:

Pim Kosalwat, Ph.D., Senior Scientist, KBN Engineering and Applied Sciences, Inc.

P. Kosalwat Signature:

Date: 8/8/96

Date: 8/8/96

APPROVED BY: 5.

Date: 9 | 3 | 9 6

STUDY PARAMETERS:

Definitive Test Duration: 120 hours Type of Concentrations: Mean measured

CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an aquatic plant toxicity test.

Results Synopsis

 EC_{50} : 5.9 ppm ai 95% C.I.: 4.9 - 7.5 ppm ai

NOEC: 2.4 ppm ai Probit Slope: N/A

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

9. **GUIDELINE DEVIATIONS:** None

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
Species Skeletonema costatum Anabaena flos-aquae Selenastrum capricornutum Navicula pelliculosa	Selenastrum capricornutum
Initial Number of Cells 3,000 - 10,000 cells/mL	3,000 cells/mL
<u>Nutrients</u> Standard formula, e.g. 20XAAP	AAP medium

B. Test System

Guideline Criteria	Reported Information
Solvent	Acetone (0.1 mL/L)
Temperature Skeletonema: 20°C Others: 24-25°C	24°C
Light Intensity Anabaena: 2.0 Klux (±15%) Others: 4.0-5.0 Klux (±15%)	4.2 - 4.5 Klux
Photoperiod Skeletonema: 14 h light, 10 h dark or 16 h light, 8 h dark Others: Continuous	Continuous

Guideline Criteria	Reported Information
pH Skeletonema: approx. 8.0 Others: approx. 7.5	Initial: 7.1 - 7.5 Final: 9.1 - 9.3

C. Test Design

Guideline Criteria	Reported Information
<u>Dose range</u> 2X or 3X progression	2X
Doses at least 5	Definitive test: 0.63, 1.3, 2.5, 5.0, and 10 mg ai/L
<pre>Controls negative and/or solvent</pre>	Negative and solvent control
Replicates per dose 3 or more	3
<u>Duration of test</u> 120 hours	120 hours
Daily observations were made?	Yes
Method of Observations	Cellular counts
Maximum Labeled Rate	Maximum labeled rate for parent compound isoxaflutole (RPA 201772) is 0.1888 lb ai/A

12. REPORTED RESULTS:

Guideline Criteria	Reported Information
Initial and 120 h cell densities were measured?	Yes
Control cell count at 120 hr 2X initial count?	Yes
Initial chemical concentrations measured? (Optional)	Yes
Raw data included?	Yes

Dose Response

Mean Measured Concentration (mg ai/L)	Avg. Cell Density (x 10° cells/ml)	% reduction*	120-Hour pH
Control	208		9.3
Solvent Cont.	279		9.3
0.61	227	19	9.3
1.3	246	12	9.3
2.4	242	13	9.2
4.6	125	55	9.2
9.4	134	52	9.1

^{*}Compared to the solvent control

Other Significant Results: Bloated algal cells and cell fragments were observed in all treatment concentrations and solvent controls.

Statistical Results

Statistical Method: The "best fit" linear regression based on

the highest coefficient of determination (r^2) was used for estimating the EC₅₀ and

Williams' test was used for mean

comparisons. Results were based on the

mean measured concentrations.

EC₅₀: >9.4 mg ai/L

95% C.I.: N/A

Probit Slope: N/A

NOEC: 2.4 mg ai/L

13. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: Moving average method for EC50 and

Williams' test for mean comparisons. Results based on the mean measured concentrations. All comparisons were

made versus the solvent control.

EC₅₀: 5.9 ppm ai

95% C.I.: 4.9 - 7.5 ppm ai

Probit Slope: N/A

NOEC: 2.4 ppm ai

14. REVIEWER'S COMMENTS: This study is scientifically sound and fulfills the guideline requirements for an aquatic plant toxicity test. Based on mean measured concentrations, the 120-hour EC₅₀ and NOEC for Selenastrum capricornutum exposed to RPA 203328 was 5.9 and 2.4 ppm ai, respectively. This study is categorized as Core.

MAX FEKEN RPA 203328 SELENASTRUM CAPRICORNUTUM 08-06-96

****	*****	**********	*****	***********
CONC.	NUMBER	NUMBER	PERCENT	BINOMIAL
	EXPOSED	DEAD	DEAD	PROB. (PERCENT)
9.39999	99	100	52	52
4.6	100	55	55	0
2.4	100	13	13	0
1.3	100	12	12	0
.61	100	19	19	0

BECAUSE THE NUMBER OF ORGANISMS USED WAS SO LARGE, THE 95 PERCENT CONFIDENCE INTERVALS CALCULATED FROM THE BINOMIAL PROBABILITY ARE UNRELIABLE. USE THE INTERVALS CALCULATED BY THE OTHER TESTS.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 4.288935

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD

SPAN G LC50 95 PERCENT CONFIDENCE LIMITS 2 .102894 5.891247 4.871376 7.513031

RESULTS CALCULATED USING THE PROBIT METHOD

ITERATIONS G H GOODNESS OF FIT PROBABILITY

3 2.09465 10.50964 0

A PROBABILITY OF O MEANS THAT IT IS LESS THAN 0.001.

SINCE THE PROBABILITY IS LESS THAN 0.05, RESULTS CALCULATED USING THE PROBIT METHOD PROBABLY SHOULD NOT BE USED.

SLOPE = 1.103937

95 PERCENT CONFIDENCE LIMITS =-.493781 AND 2.701656

LC50 = 7.94624

95 PERCENT CONFIDENCE LIMITS = 1.801426 AND +INFINITY

LC10 = .5619971

95 PERCENT CONFIDENCE LIMITS = 0 AND 2.218191

File: 43904826 Transform: NO TRANSFORM

t-test of Solvent and Blank Controls Ho:GRP1 MEAN = GRP2 MEAN

GRP1 (SOLVENT CRTL) MEAN = 278.6667 CALCULATED t VALUE = 2.3342

GRP2 (BLANK CRTL) MEAN = 208.3333 DEGREES OF FREEDOM = 4

DIFFERENCE IN MEANS = 70.3333

TABLE t VALUE (0.05 (2), 4) = 2.776 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 4) = 4.604 NO significant difference at alpha=0.01

RPA 203328 - SELENASTRUM CAPRICORNUTUM

File: 43904826 Transform: NO TRANSFORM

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N 	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	GRPS 1&2 POOLED	6	243.500	243.500	243.500
2	0.61	3	227.000	227.000	238.333
3	1.3	3	246.000	246.000	238.333
4	2.4	3	242.000	242.000	238.333
5	4.6	3	125.667	125.667	129.667
6	9.4	3	133.667	133.667	129.667

RPA 203328 - SELENASTRUM CAPRICORNUTUM

File: 43904826 Transform: NO TRANSFORM

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 O	F 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
GRPS 1&2 POOLED 0.61 1.3 2.4 4.6 9.4	243.500 238.333 238.333 238.333 129.667 129.667	0.196 0.196 0.196 4.308 4.308	*	1.75 1.84 1.87 1.88 1.89	k= 1, v=15 k= 2, v=15 k= 3, v=15 k= 4, v=15 k= 5, v=15

s = 37.373

Note: df used for table values are approximate when v > 20.

File: 43904826 Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	6	60765.143	10127.524	10.479
Within (Error)	14	13530.667	966.476	
Total	20	74295.810		

Critical F value = 2.85 (0.05,6,14) Since F > Critical F REJECT Ho: All equal

File: 43904826 Transform: NO TRANSFORMATION

	DUNNETT'S TEST -	TABLE 1 OF 2	Ho:Control <t< th=""><th colspan="2">Ho:Control<treatment< th=""></treatment<></th></t<>	Ho:Control <treatment< th=""></treatment<>	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т ѕтат	sig
1	SOLVENT	278.667	278.667		
2	CONTROL		208.333	2.771	*
3	0.61	227.000	227.000	2.035	
4	1.3	246.000	246.000	1.287	
5	2.4	242.000	242.000	1.445	
6	4.6	125.667	125.667	6.028	*
7	9.4	133.667	133.667	5.712	*

Dunnett table value = 2.53 (1 Tailed Value, P=0.05, df=14,6)

RPA 203328 - SELENASTRUM CAPRICORNUTUM

I a: 43904826 Transform: NO TRANSFORMATION

	DUNNETT'S TEST -	TABLE 2 O	F 2 Ho	:Control<	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	SOLVENT	3			
2	CONTROL	3	64.220	23.0	70.333
3	0.61	3	64.220	23.0	51.667
4	1.3	3	64.220	23.0	32.667
5	2.4	3	64.220	23.0	36.667
6	4.6	3	64.220	23.0	153.000
7	9.4	3	64.220	23.0	145.000

NOEL = 2.4 mg a1/L

File: 43904826 Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	SOLVENT	3	278.667	278.667	278.667
2	CONTROL	3	208.333	208.333	230.833
3	0.61	3	227.000	227.000	230.833
4	1.3	3	246.000	246.000	230.833
5 .	2.4	3	242.000	242.000	230.833
6	4.6	3	125.667	125.667	129.667
7	9.4	3	133.667	133.667	129.667

RPA 203328 - SELENASTRUM CAPRICORNUTUM

File: 43904826 Transform: NO TRANSFORMATION

_	WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	7 2
	IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
	SOLVENT	278.667				
	CONTROL	230.833	1.884	*	1.76	k = 1, v = 14
	0.61	230.833	1.884	*	1.85	k = 2, v = 14
	1.3	230.833	1.884	*	1.88	k = 3, v = 14
	2.4	230.833	1.884		1.89	k = 4, v = 14
	4.6	129.667	5.870	*	1.90	k=5, v=14
	9.4	129.667	5.870	*	1.91	k = 6, v = 14
	2.4 4.6	230.833 129.667	1.884 5.870	*	1.89 1.90	k= 4, v=14 k= 5, v=14

s = 31.088

Note: df used for table values are approximate when v > 20.

9-3-96

MRID No. 439048-21

DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TEST **GUIDELINE 72-4**

Isoxaflutole PC Code No.: 123000 1. CHEMICAL:

Purity: 96.8% TEST MATERIAL: Isoxaflutole

(RPA 201772 Technical)

CITATION: 3.

> Author: Joseph V. Sousa

Title: Isoxaflutole - Chronic Toxicity to Mysids

(Mysidopsis bahia) Under Flow-Through

Conditions

Study Completion Date: December 1, 1995

> Springborn Laboratories, Inc., Wareham, Laboratory:

> > MA

Rhône-Poulenc Ag Company, Research Sponsor:

Triangle Park, NC

95-8-6017 <u>Laboratory Report ID:</u>

439048-21 MRID No.: DP Barcode: D222982

Max Feken, M.S., Environmental Toxicologist, REVIEWED BY:

KBN Engineering and Applied Sciences, Inc.

Signature:

Ex the

Date: 8/8/96

Pim Kosalwat, Ph.D., Senior Scientist, APPROVED BY:

KBN Engineering and Applied Sciences, Inc.

Signature:

Date: 8/8/96

5. APPROVED BY:

Signature:

P. Kosalwat Zenée Costello

Date: 9/3/96

6. **STUDY PARAMETERS:**

> Age of Test Organism: <24 hours Definitive Test Duration:

28 days

Study Method: Flow-Through

Mean Measured Type of Concentrations:

CONCLUSIONS: This study is scientifically sound and fulfills 7. the guideline requirements for a saltwater invertebrate lifecycle test.

Results Synopsis: Most sensitive endpoint: survival

NOEC: 1.0 ppb ai LOEC: 1.9 ppb ai MATC: 1.4 ppb ai LOEC's for specific endpoints:

Neonates Produced: >3.8 ppb ai Mysid Survival: 1.9 ppb ai Growth (length): >1.9 ppb ai Growth (weight): >1.9 ppb ai

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

- 9. <u>GUIDELINE DEVIATIONS</u>: Since an EPA SEP for the mysid life cycle test does not exist, ASTM's Standard Guide for Conducting Life-Cycle Toxicity Tests With Saltwater Mysids (E1191-90) was used as a guidance in this evaluation. Deviations from the ASTM's guidelines are noted as follows:
 - 1. The source of the fresh water used to prepare the artificial seawater was not reported. However, the dilution water was apparently adequate for satisfactory survival, growth, and reproduction of the control mysids.

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS

A. Test Organisms/Acclimation

Guideline Criteria	Reported Information
<u>Species</u> Mysidopsis spp.	Mysidopsis bahia
<pre>Source Laboratory, commercial, or wild stock.</pre>	In-house cultures
Parental Acclimation Conditions Parental stock must be maintained separately from the brood culture in dilution water and under test conditions.	Held under test conditions at 25-26°C in dilution water
Parental Acclimation Period At least 14 days.	Continuous

Guideline Criteria	Reported Information
Age of Parental Stock At least 10-12 days old at the beginning of the acclimation period.	Not reported
Food Brine shrimp nauplii in possible combination with rotifers and/or algae.	Mysids were fed freshly hatched brine shrimp nauplii twice daily, with one feeding supplemented with Selco®.
Food Concentration 150 brine shrimp nauplii per mysid per day.	Not reported
Were mysids in good health during acclimation period?	Yes

B. Test System

Guideline Criteria	Reported Information
Test Water Unpolluted saltwater that has been tested for contaminants, or appropriate reconstituted water.	Artificial seawater prepared from filtered freshwater to a salinity of 25 ± 3%.
Water Temperature 27 ±2°C.	26-28°C
<u>pH</u>	8.0 to 8.3
<pre>Dissolved Oxygen ≥60% throughout test.</pre>	≥78% of saturation during the test
Test Vessels or Compartments 1. Material: Glass, No. 316 stainless steel, or perfluorocarbon plastics 2. Size: 250 mL with 200 mL fill volume is preferred; 100 mL with 80 mL fill volume is acceptable.	1. Glass 2. Each aquaria (39 x 20 x 25 cm) contained two retention chambers consisting of glass Petri dishes (10 cm diameter) with 15-cm high Nitex® screen collars.

Guideline Criteria	Reported Information
Type of Dilution System Must provide reproducible supply of toxicant. Inter- mittent flow proportional diluters or continuous flow serial diluters should be used.	Intermittent-flow proportional diluter.
Flow Rate At least 5 volume additions per 24 hours.	12 volume additions per 24 hours providing 90% replacement in approximately 5 hours.
<u>Aeration</u> Dilution water should be vigorously aerated, but the test tanks should not be aerated.	Dilution water was aerated prior to use.
Photoperiod 16 hours light, 8 hours dark	16 hours light, 8 hours dark
Solvents Not to exceed 0.5 mL/L for static tests or 0.1 mL/L for flow-through tests. Acceptable solvents are dimethylformamide, triethylene glycol, methanol, acetone and ethanol.	Solvent: acetone Maximum conc.: 0.0065 mL/L

C. Test Design

Guideline Criteria	Reported Information
<u>Duration</u>	28 days
Nominal Concentrations Control(s) and at least 5 test concentrations; dilution factor not less than 50%.	Dilution water control, solvent control, and five treatment concentrations: 0.31, 0.62, 1.2, 2.5, and 5.0 µg ai/L.

Guideline Criteria	Reported Information
Number of Test Organisms 60 mysids/level; At least two test replicate vessels, each containing two chambers, with each chamber containing 15 mysids until 10 or 14 days after initiation. After sexing, at least 10 mated pairs per replicate.	60 mysids/level; 2 replicate vessels each containing 2 retention chambers with 15 mysids each for the first 14 days; 10 pairing jars with mated pairs and the remaining males and females separated in single retention chambers from day 15 to test termination.
Test organisms randomly or impartially assigned to test vessels?	Impartially distributed
Renewal Parent mysids in all beakers must be transferred to containers with fresh test solution (< 4 hours old) three times each week (e.g. every Monday, Wednesday and Friday).	N/A
Water Parameter Measurements 1. Dissolved oxygen must be measured at each concentration at least once a week.	1. Dissolved oxygen was measured daily in each vessel.
2. pH must be measured once a week in one test concentration and in one control.	2. The pH was measured daily in each test vessel.
3. Temperature should be monitored at least hourly throughout the test in one test chamber, and near the beginning, middle and end of the test in all test chambers.	3. Temperature was measured daily in each vessel and continuously in one replicate vessel of the dilution water control.
Chemical Analysis Needed if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used.	Samples removed and analyzed on days 0, 2, 7, 14, 21, and 28. Results based on the mean measured concentrations.

12. REPORTED RESULTS

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
<pre>Control Mortality ≤30% between pairing and test termination.</pre>	18% and 23% for control and solvent control, respectively.
Did at least 75% of the paired female mysids in each control produce at least 3 young by test termination?	Yes
 Data Endpoints Survival of first-generation mysids, Number of young produced per female, Dry weight (required) and length (optional) of each first generation mysid alive at the end of the test, Observations of other effects or clinical signs. 	 Survival of parental mysids, Number of offspring per female per reproductive day, Male and female dry weight and length of surviving first generation mysids.
Raw data included?	Yes

Effects Data

Toxicant Concentration (µg ai/L)		Percent Dead or	Number of Young per	Mean Total	Mean Dry
Nominal	Measured	Immobile (28 Days)	Female per Reprod. Day	Length (mm)	n Weight (mg)
Control	<0.1	18	0.44	M 7.1 F 7.0	M 0.84 F 0.85
Solvent	<0.1	23	0.53	M 7.1 F 7.0	M 0.85 F 0.97
0.31	0.30	23	0.73	M 7.1 F 7.1	M 0.76 F 1.0

Toxicant Concentration (μg ai/L)		Percent Dead or	Number of Young per	Mean Total	Mean Dry	
Nominal	Measured	Immobile (28 Days)	Female per Reprod. Day	Length (mm)	Weight (mg)	
0.62	0.52	37	0.67	M 7.3 F 7.2	M 0.84 F 0.96	
1.2	1.0	30	0.58	M 7.1 F 7.0	M 0.89 F 1.0	
2.5	1.9	52	0.40	M 6.9 F 7.1	M 0.84 F 0.99	
5.0	3.8	87	0.53	M 7.1 F 7.2	M 0.84 F 0.85	

Toxicity Observations: None.

B. Statistical Results: The results are based on mean measured concentrations.

Endpoint	Method	1 CONSTRUCTION OF THE PROPERTY AND ADDRESS OF	LOEC (μg ai/L)
Survival	Williams' test	1.0	1.9
Reproductiona	Williams' test	1.0	NDb
Length ^a	Williams' test	1.0	ND
Dry weight ^a	Williams' test	1.0	ND

^aSince survival was significantly affected at the two highest treatment levels (1.9 and 3.8 μ g ai/L), reproductive and growth data for these treatment levels were not included in the statistical analysis.

bND - Not determined

13. VERIFICATION OF STATISTICAL RESULTS

Endpoint	Method	NOEC (ppb ai)	LOEC (ppb ai)
Survival	Williams' test	1.0	1.9
Reproduction	Visual inspection	3.8	>3.8
Length ^a	Bonferroni's test	1.9	>1.9
Dry weighta	Bonferroni's test	1.9	>1.9

^aGrowth data from the highest test concentration were not included in the analysis due to complete mortality in some replicates.

14. REVIEWER'S COMMENTS: This study is scientifically sound, fulfills the guideline requirements for a mysid life-cycle test, and can be classified as Core. Based on the most sensitive endpoint (survival), the NOEC and LOEC are 1.0 and 1.9 ppb ai, respectively. The geometric mean MATC is 1.4 ppb ai.

ISOXAFLUTOLE - MYSID SURVIVAL

File: 43904821 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	SOLVENT	2	0.765	1.068	1.102
2	CONTROL	2	0.820	1.136	1.102
3	0.30	2	0.770	1.071	1.071
4	0.52	2	0.635	0.923	0.958
5	1.0	2	0.700	0.992	0.958
6	1.9	2	0.485	0.770	0.770
7	3.8	2	0.134	0.363	0.363

ISOXAFLUTOLE - MYSID SURVIVAL

File: 43904821 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	7 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
SOLVENT CONTROL 0.30 0.52 1.0 1.9	1.102 1.102 1.071 0.958 0.958 0.770	0.347 0.022 1.136 1.136 3.053 7.222	* *	1.89 2.00 2.04 2.06 2.07 2.08	k= 1, v= 7 k= 2, v= 7 k= 3, v= 7 k= 4, v= 7 k= 5, v= 7 k= 6, v= 7

s = 0.098

Note: df used for table values are approximate when v > 20.

NOEL= 1.0 mg ai/L

ISOXAFLUTOLE - MYSID SURVIVAL

File: 43904821 Transform: ARC SINE(SQUARE ROOT(Y))

t-test of Solvent and Blank Controls Ho:GRP1 MEAN = GRP2 MEAN

GRP1 (SOLVENT CRTL) MEAN = 1.0685 CALCULATED t VALUE = -0.6683

GRP2 (BLANK CRTL) MEAN = 1.1363 DEGREES OF FREEDOM = 2

DIFFERENCE IN MEANS = -0.0678

TABLE t VALUE (0.05 (2), 2) = 4.303 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 2) = 9.925 NO significant difference at alpha=0.01

ISOXAFLUTOLE - MYSID SURVIVAL

File: 43904821 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

G.	JP	IDENTIFICATION	N 	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
	1	GRPS 1&2 POOLED	4	0.793	1.102	1.102
	2	0.30	2	0.770	1.071	1.071
	3	0.52	2	0.635	0.923	0.958
	4	1.0	2	0.700	0.992	0.958
	5	1.9	2	0.485	0.770	0.770
	6	3.8	2	0.134	0.363	0.363

ISOXAFLUTOLE - MYSID SURVIVAL

File: 43904821 Transform: ARC SINE(SQUARE ROOT(Y))

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICAT	ION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
GRPS 1&2	POOLED 0.30 0.52 1.0 1.9 3.8	1.102 1.071 0.958 0.958 0.770	0.388 1.770 1.770 4.059 9.038	*	1.86 1.96 2.00 2.01 2.02	k= 1, v= 8 k= 2, v= 8 k= 3, v= 8 k= 4, v= 8 k= 5, v= 8

s = 0.094

Note: df used for table values are approximate when v > 20.

2.15	0.014720									
2.15	0 01/0229	1.7012011	114	Error	1.0500000	0.6600000	0.1053634 0.2261842	0.8483333 0.9745455	22	FUGHT
	0.0320252	0.1921510	0	Model	7.7000000 7.9000000	6.5000000 6.2000000	0.2726348	7.1041667 7.0181818	22	-
:Value Pr > F	Square F	Squares	PF	Source	Maximum	Minimum	Std Dev	Mean	Z	Variable
	K		e: MUGHT	Dependent Variable						
	Procedure	General Linear Models Procedure	General				- TRT=solv			
', August 6,	13:38 Tuesday	יסרני - שופוס כם	TOUNTED		1.2200000	0.3600000	0.2063300	0.8548148	27	FWGHT
2.12	7 0.2457675 2.12 0.0683 5 0.0037205 0.03 0.8582	5 1.2288377 1 0.0037205	180X A F111	REP	7.400000 7.600000 1.0800000	6.5000000 6.5000000	0.2643705 0.3088901 0.1332608	7.0681818 7.0185185 0.8418182	222	MLNGTH FLNGTH
F Value Pr > F	Mean Square F	Type III SS	DF	Source	Maximum	Minimum	Std Dev	Mean	Z	Variable
2.11 0.0690 0.03 0.8582	0.2450762 0.0037205	1.2253810 0.0037205	ച ਯ	REP			- TRT=cont			
Value Pr > F	Mean Square F	Type I SS	DF	Source	1.3000000	0.010000	1121462.0	0.7002300	٥	- 463
7.0843	0.3407	4.808927	0.084999		7.700000 0.9700000	0.6900000	0.4105745	7.0500000 0.8357143	°5°;	MWGHT H
MLNGTH Mean	Root MSE	c.v.	R-Square		7 4000000	, 2000000	0 3301515	A 000000	2	MENGTH
		14.4601653	120	Corrected Total	Maximum	Minimum	Std Dev	Mean	z	Variable
	0.1160620	13.2310638	114	Error			TRT=IV			
1.77 0.1125	0.2048502	1.2291015	0	Model						
F Value Pr > F	Mean Square F	Sum of Squares	Le: MLNGTH	Dependent Variable Source	7.700000 7.900000 1.140000	0.5000000 0.5000000	0.3607011 0.3421665 0.1284482	7.1200000 7.0227273 0.8940000	8888	FLNGTH WEGHT
	Procedure	General Linear Models Procedure	General	•	Maximum	Minimum	Std Dev	Mean	z	Variable
/, August 6	HRONIC TEST 13:38 Tuesday	ISOXAFLUTOLE - MYSID CHRONIC TEST 13:38 Tuesday, August 6, 1996	ISOXAFLU				- TRT=111			
ct to the	ent with respenses.	in each group are consistent with respect to the r absence of missing values.	n each grou absence of	NOTE: Variables in	1.0200000 1.3800000	0.4500000	0.0970420	0.8380000 0.9630435	23.5	MWGHT FWGHT
	WGHT	129 FLNGTH FWGHT	₽.		7.6000000 8.0000000	6.7000000 6.5000000	0.2501428 0.3067102	7.2600000 7.1956522	ដូ	FLNGTH
	WGHT	121 MLNGTH MWGHT			Maximum	Minimum	Std Dev	Mean	z	Variable
	Dependent Variables	Obs Dependent	Group		1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TRT=II	: : : : : : : : :		1
œ	data set = 148	Number of observations in data set =	lumber of o			0.020000	0. 1000429		21	r WGn:
,			REP	77	8.0000000 7.7000000	5.800000 0.3400000	0.5016348 0.3212334 0.1660515	7-1052632 7-1370370 0-7621053	\$55¢	FLNGTH MWGHT
<	Values I II III IV cont solv	Levels Values	Class Le TRT		Maximum	Minimum	Std Dev	Mean	Z	Variable
	mation	Class Level Information	Cla				TRT=1			
y, August 6	13:38 Tuesday, August 6, 1996	linear Models	General		August 6, 1996	CHRONIC TEST 13:38 Tuesday,	- MYSID	ISOXAFLUTOLE		

0.15656 0.16534 0.18111 0.17272 0.24923 ***	-0.04567 0.00652 0.01033 0.01262 0.08623	-0.15656 -0.10159 -0.11022 -0.09683	1 - Alos 11 - Alos 11 - Alos 11 - Alos 111 - Alos	e G	Simultaneous Difference Upper Between Confidence Means Limit	Simultaneous Lower Diff Confidence Be Limit M	Simu TRT Con Comparison	Compr	
	0.04567 0.05218 0.05600 0.05829 0.13189	-0.06523 -0.06098 -0.06911 -0.05615 0.01456	III - solv	5062 by '***'.	df= 114 MSE= 0.116062 T= 2.99831 level are indicated by	se comparisons. Confidence= 0.95 di Critical Value of Tale cant at the 0.05 lev	= 0.05 Confider Critical	Alpha= Comparisons:	
Simultaneous Upper Confidence Limit	Difference Between Means	Simultaneous Lower Confidence Limit	TRT Comparison	H Tukey's for	Bonferroni (Dunn) I tests for variable: MLNGTH his test controls the type I experimentwise error rate bu enerally has a higher type II error rate than Tukey's for	n) I tests for	Bonferroni (Dunn) I tests f This test controls the type generally has a higher type	NOTE: TH	
indicated by '***'.	0.05 level are	ficant at the 0.	Comparisons signif		Procedure	General Linear Models Procedure	General		
MSE= 0.014923 131	.95 df= 114 I e of T= 2.9983	Confidence= 0.95 Critical Value of	Alpha= 0.05	August 6, 1996	CHRONIC TEST 13:38 Tuesday,	- MYSID	ISOXAFLUTOLE		
experimentwise error rate bu error rate than Tukey's for	==	This test controls the type generally has a higher type all pairwise comparisons.	NOTE: This test generally all pairw	es associated	only probabilities associated be used.	ection level, risons should	To ensure overall protection level, with pre-planned comparisons should		NOTE:
ble: MWGHT	ਕੁ	ni (Dunn) ĭ tests	Bonferroni	0.8569 .	0.7900	0.8440	٥٠		solv
lure	Models Procedur	General Linear M				0.9647			IVI
8 Tuesday, August 6, 1996	MYSID CHRONIC T 13:38	ISOXAFLUTOLE - MY	SI	0.0380 0.0224 0.9723 0.8440	0.9647	0.0646	0.76147590 1 0.0		=-
0.14345	16818	84	con .	5 6	(i)=LSMEAN(j)	T HO: LSMEAN(i)=LSMEAN(j)	MWGHT Pr >		TRT
-0.01468 *** 0.09915 0.11816	-0.36000 -0.20526	-0.70532 -0.53915 -0.52868	III - VI		0.6199 0.1065 0.8741 0.0464 0	0.0978			solv
0.28283 0.26551 0.47981	-0.03708 -0.03598 0.16818	-0.35699 -0.33748 -0.14345	cont - IV	0.7268 0.9894 0.0978 0.1710 0.6199 0.8741	0.0585 0.0022 0.0403	0.1962	7.10555750 1 7.25888151 2 0.1 7.12055925 3 0.8		===
0.15021 0.26377	-0.19182 -0.05182	-0.53385 -0.36741	cont - III	5 6	(i)=LSMEAN(j) 4	T HO: LSMEAN(i)=LSMEAN(j)	MLNGTH Pr > LSMEAN i/j		TRT
0.31257 0.33748 0.50939	-0.00110 0.03598 0.20417	-0.31477 -0.26551 -0.10105			Procedure eans	General Linear Models Procedure Least Squares Means	General Le		
0.18037 0.29343	-0.15583 -0.01583	-0.49204 -0.32510	solv - III	August 6, 1996	MYSID CHRONIC TEST 13:38 Tuesday,	OLE - MYSID CI	ISOXAFLUTOLE -		
0.19807 0.31425 0.31427 0.35699 0.52868	-0.15474 -0.01474 0.00110 0.03708 0.20526	-0.50755 -0.34197 -0.31257 -0.28283 -0.11816	I - IOUT	2.34 0.0464 1.14 0.2879		0.1743000 0.0170096	-> ∨ 5		REP
0.53915	0.22000	-0.09915		Value Pr > f	Mean Square F V	Type III SS	DF	гсе	Source
0.34197 0.32510 0.36741	0.01474 0.01583 0.05182	-0.31250 -0.29343 -0.26377	III - cont	2.35 0.0455 1.14 0.2879	0.0350283	0.1751414 0.0170096	70		REP TRT
0.20890	-0.14000	-0.48890		Value Pr > F	Mean Square F V	Type I SS	DF	rce	Source
0.49204 0.53385 0.70532 ***	0.15583 0.19182 0.36000	-0.18037 -0.15021 0.01468	II - solv	0.8377	0.1222	14.58291	0.101487		
0.48890 0.50755	0.14000 0.15474	Page 4 -0.20890 -0.19807	File:a:\43904821.out II	MWGHT Mean	Root MSE	C.V.	File:a:\43904821.out Page 3 R-Square	e:a:\439048	Fil

Comparisons significant at the 0.05 level are indicated by '***'. Simultaneous Simultaneous	Alpha= 0.05 Confidence= 0.95 df= 114 MSE= 0.014923 Critical Value of Dunnett's T= 2.277	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	tests 1	TPgue	ISOXAFLUTOLE - MYSID CHRONIC TEST		solv -0.26500 -0.03598 solv -0.43601 -0.20417	11 - solv -0.27716 0.01583 0.25075	- solv -0 00054 0 15583	TRT Confidence Between Confidence Comparison Limit Means Limit	Difference	Comparisons significant at the 0.05 level are indicated by '***'.	Alpha= 0.05 Confidence= 0.95 df= 114 MSE= 0.116062 Critical Value of Dunnett's T= 2.277	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	Dunnett's One-tailed T tests for variable: MLNGTH	General Linear Models Procedure	ISOXAFLUTOLE - MYSID CHRONIC TEST 13:38 Tuesday, August 6, 1996		I - II -0.20240 -0.07589 0.05061	- solv -0.19870 -0.08623	- 111 -0 26023 -0 13180	- II -0.12611 -0.00229 - I -0.04236 0.07361	IV - solv -0.12206 -0.01262 0.09683 IV - cont -0.11785 -0.00610 0.10564	- IV -0.17354 0.00229 - I -0.05061 0.07589	-0.05600 -0.01033	• • •	III -0.16534 -0.05218 solv -0.11462 -0.00652	ile:a:\43904821.out Page 5
TRT	REP	Source	0.	70	Corrected Total	Error	Model	Source	Dependent Variable:			REP	Source	REP	Source			Corrected Total	Error	Model	Source	Dependent Variable:			10s - 1	• •	TRT Comparison	File:a:\43904821.out
vr - 5	n>∪	DF.	.066056	R-Square	128	122	6	무	FWGHT	General	. 0000	1 20X A FI II	, P	- 105	PF	+0C7+0.	R-Square	128	122	٥	٥	: FLNGTH	General	ISOXAFLUTOLE -	<<<	< <		Pa
0.3904926	0.3920642	Type I SS	22.28490	C.V.	5.9574248	5.5639013	0.3935235	Squares	2	General Linear Models	וסרב השופוס כ	5 0.6825882 0.1365176 1.20 1 0.0306839 0.236839 0.27 SOXAFILITOI F - MYSID CHRONIC TEST	Type III SS	0.6601736 0.0306839	Type I SS	4.727002	C.V.	14.5248062	13.8339486	0.6908576	Squares	Sum of	Linear Models		-0.10191 -0.09575 -0.17166 -0.17166		Confidence B	
0.0780985 0.0014593	0.0784128 0.0014593	Mean Square	0.2136	Root MSE		0.0456057	0.0655872	Square	E .	Procedure	13:38 Tuesd	0.1365176 0.0306839	Mean Square	0.1320347 0.0306839	Mean Square	0.3307	Root MSE		0.1133930	0.1151429	Square	X ean	s Procedure	MYSID CHRONIC TEST 13:38 Tuesday, August	-0.01033 0.00 -0.01262 0.00 -0.08623 -0.00		Between Conf Means L	
	i William	· · · · · ·	0	***		-					<u></u>													u.		<u> </u>		
1.71	n	71	0	FWGHT Mean			1.44	F Value			ıy, August	0.27	F Value	1.16 0.27	F Value		FLNGTH Mean			1.02	F Value			ay, Augus	0.08124 0.07051 -0.00079 ***	17560 17560	Confidence Limit	Š

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6, 1996	t - solv -0.25874 -0.11973	I - solv -0.11133 0.02768 0.16669 III - solv -0.12048 0.02545 0.17139 IV - solv -0.18812 0.01170 0.21153 II - solv -0.15584 -0.01150 0.13283	ison Limit Means	TRT Confidence Retueen Confidence	05 level are	Alpha= 0.05 Confidence= 0.95 df= 122 MSE= 0.045606 Critical Value of Dunnett's T= 2.266	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	General Linear Models Procedure Dunnett's One-tailed T tests for variable: FWGHT		ISOXAFLUTOLE - MYSID CHRONIC TEST	t - solv -0.21886 0.00034	IV - solv -0.28327 0.03182 0.34691	-0.05012 0.17747 -0.10034 0.11886	Difference Between Means	Simultaneous Simultaneou	Critical Value of Dunnett's T= 2.266 Comparisons significant at the 0.05 level are indicated by /***/	be I experi nts against	Dunnett's One-tailed T tests for variable: FLNGTH	General Linear Models Procedure	ISOXAFLUTOLE - MYSID CHRONIC TEST 13:38 Tuesday, August 6, 1996		cont - IV -0.38882 -0.13144 0.12595 cont - solv -0.30338 -0.11973 0.06392 cont - II -0.28966 -0.10823 0.07320	- II	0.10823	
Dependent Vari		TRT ANAI	Source	Tests of Hypo	TRT TRT TRT	Source	REP*TRT	Source		_	Corrected Total	Error	Model	Source		ANA	NOTE: Variables								F1(e:8:\43904821.out
Variable: MWGHT DF	General	5 ANALYSIS USING TRI	DF	Hypotheses using th	U1 U1 —	, PF	"	. PF	0.147742	R-Square	al 120	109	11	Variable: MLNGTH DF	General	ANALYSIS USING TR	ુ ≒.	8	_	Group	Number of o	TRT	REP	Class Le	General Cla
Sum of Squares	eneral Linear Models Procedure	0.8922446 *REP INTERACT	Type III SS	using the Type III MS	0.8922446	Type III ss	1.2288377 0.9072785	Type I SS	4.746375	c.v.	14.4601653	12.3237854	2.1363799	Sum of Squares	General Linear Models Procedure	T*REP INTERAC	up are consist f missing valu	129 FLNGTH FWGHT	121 MLNGTH MWGHT	Obs Depende	er of observations in data set	6 1 11	2 a b	Levels Values	General Linear Models Procedure Class Level Information
Mean Square	Procedure	5 0.8922446 0.1784489 0.98 ING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August	Mean Square	for REP*TRT	0.1784489	3	0.2457675	*	0.3362	Root MSE		0.1130623	0.1942164	Mean Square	s Procedure	USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6,	each group are consistent with respect to the absence of missing values.	FWGHT	MUGHT	Dependent Variables	#	I II III IV cont solv		Ø	s Procedure rmation
F Value		0.98 ROR TERM lay, August	F Value	as an error	1.58	71	1.60	71		MLN			1.72	F Value		RROR TERM day, August	pect to the				148	οlv			
Pr v		0.5071	Pr > F	r term	0.1722	Pr > F	0.0622	Pr > F	7.0843	MLNGTH Mean			0.0786	7 V		: 6, 1996	.,								

6, 1996	OR TERM	3:38 Tuesday	INTERACTION	1RT*REP	ANALYSIS USINO	
				-	1	
ociated	ities ass	ily probabil	level,	protectio	overall	NOTE: To e
•	0.8836					
0.7574 0.8836						~
0.7291 0.3801						
0 1085		3 7 4	2 2 2	- - 		
		=LSMEAN(i)): LSMEAN(i)	<u>*</u>		TRT
MS for	Ξ	the	CO .	babilities REP*TRT a	훏	Standard E
0.7862						ζ.π
0.8478 0.2388						V
0.9791						
σ.	ر ا)=LSMEAN(j) ₄): LSMEAN(i	v	MLNGTH P	TRT
		=	as an Error	REP*TRT	2	
		,	Squares Mea	Least	į	7
		rocedure	ar Models P	eral Line	Gen	
6, 1996		겉픘	INTERACTIO		ANALYSIS USIN	
0.3062	1.61	0.0331372	.1656858	5		TRT
Pr > F	F Value	Square	SS 111	DF Typ		Source
or term		REP*TRT	SW 111		Hypotheses usi	Tests of
0.4253 0.0535 0.2297	0.64 2.26 1.40	0.0093918 0.0331372 0.0205409	.0093918 .1656858 .1027043	000 000		REP*TRT
Pr > F	f Value	ean Square		DF Typ		Source
0.2723 0.0434 0.2297	1.22 2.38 1.40	0.0178510 0.0348600 0.0205409	.0178510 .1743000 .1027043	เมเม⊸		REP TRT REP*TRT
Pr > F	F Value	ean Square	SS I	OF T		Source
0.8377		0.1211	14.45644	732	0.155	_
JGHT Mean	3	Root MSE	c.v.		ᅍ	
			.8933521		Total	Corrected Total
		0-0146651	5084068			T 707
0.0577	1.83	0.0268050	.2948553	=		File:a:\4
	0.0577 O.8377 Pr > F 0.2723 0.04253 0.04253 0.02297 Pr > F 0.2297 Pr > F 0.3062 O.3062 MS for MS for MS for MS for MS for 0.3888 0.7862 0.7862 0.1085 0.7862 0.1085 0.77874 0.8836	1.83 Mugi Value 1.22 2.38 1.40 2.26 1.40 2.26 1.40 3.857 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.6	1.83 Mugist 6 1.22 2.38 1.40 1.22 2.38 1.40 1.64 2.26 1.40 an error Value 1.61 TERM August 6 1.8301 0.37862 0.7862 0.7862 0.7862 0.7862 0.3255 0.1373 0.3255 0.1373 0.3836 0.8836 0.8836 0.8836 0.8836 0.8836 0.8836 0.8836	1.83 Mugi Walue 1.22 2.38 1.40 1.40 Value 0.64 2.26 1.40 an error Value 1.61 1.61 1.61 1.61 1.61 1.61 1.61 0.5766 0.0.7862 0.7862 0.7862 0.7862 0.3469 0.3469 0.3836 0.3836 0.8836 0.8836 0.8836 0.8836 0.8836	0.2948553 0.0268050 1.83 1.5984968 0.0146651 1.8933521 C.V. Root MSE MWGI 14.45644 0.1211 Type IIS Mean Square F Value 0.01778510 0.0178510 2.38 0.1027043 0.0205409 1.40 Type III SS Mean Square F Value 0.0093918 0.0331372 2.26 0.1027043 0.0205409 1.40 Type III MS for REP*TRT as an error Type III MS For REP*TRT as an error Type III SS Mean Square F Value 0.1656858 0.0331372 1.61 Type III MS For REP*TRT as an error Type III SS Mean Square F Value 0.1656858 0.0331372 1.61 Type III MS For REP*TRT as an error Type III MS For REP*TRT as an error Type III MS For REP*TRT as an error Type III MS THE ERROR TERM 13:38 THE ERROR TERM 10.2853 0.4741 0.02014 0.2014	11. out Page 11 109 1.5984968 0.0146651 120 1.8933521 R-Square C.V. Root MSE Mail Colored Col

Page 12 eneral Linear Models Procedure

me-tailed I tests for variable: MLNGTH

s controls the type I experimentwise error for ns of all treatments against a control.

Confidence= 0.95 df= 5 MSE= 0.181456 cal Value of Dunnett's T= 3.015

cant at the 0.05 level are indicated by '***'.

II - solv Cont - solv III - solv	TRT Comparison
-0.2668 -0.3730 -0.3932 -0.4150 -0.5879	Simultaneous Lower Confidence Limit
0.1558 0.0158 0.0011 -0.0360 -0.2042	Difference Between Means
0.5785 0.4046 0.3954 0.3431 0.1796	Simultaneous Upper Confidence Limit

NG TRT*REP INTERACTION AS THE ERROR TERM
13:38 Tuesday, August 6, 1996

neral Linear Models Procedure

One-tailed I tests for variable: MWGHT

controls the type I experimentwise error for s of all treatments against a control.

Confidence= 0.95 df= 5 MSE= 0.020541 ical Value of Dunnett's T= 3.015

cant at the 0.05 level are indicated by '***'.

TRT Comparison	Simultaneous Lower Confidence Limit	Difference Between Means	Simultaneous Upper Confidence Limit	
II - solv	-0.08515 -0.13404 -0.15254 -0.14172	0.04567 -0.00652 -0.01033 -0.01262	0.17648 0.12101 0.13188 0.11648	
vjos - v	-0.14172 -0.21891	-0.01262 0.08623	0.11648	

NG TRT*REP INTERACTION AS THE ERROR TERM
13:38 Tuesday, August 6, 1996

neral Linear Models Procedure

FLNGTH Mean	FLN	Root MSE	C.V.	R-Square	20
			14.5248062	128	Corrected Total
		0.1145610	13.4036343	117	Error
0.5526	0.89	0.1019247	1.1211719	1	Model
Pr > F	Square F Value	Square	Squares	무	Source
		K op	2	FLNGTH	Dependent Variable: FLNGTH

ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6, 1996 General Linear Models Procedure Least Squares Means Standard Errors and Probabilities calculated using the Type III MS for REP*TRT as an Error term	Source DF Type III SS Mean Square F Value Pr > F TRT 5 0.4486850 0.0897370 0.94 0.5251	REP 1 0.0030309 0.0030309 0.07 0.7922 (REP*TRT 5 0.3904926 0.0780985 1.80 0.1190 0.1190 0.0000 (REP*TRT 5 0.4760039 0.0952008 2.19 0.0600 (REP*TRT 5 0.4760039 0.0952008 2.19 0.0600 (REP*TRT 1 0.0093316 0.093316 0.21 0.6441 0.0093316 0.0897370 2.06 0.0749 0.0600 (REP*TRT 1 0.0093316 0.0952008 2.19 0.0952008 2.19 0.0600 (REP*T	0.145957 21.76092 0.2085 0.9583 Source DF Type I SS Mean Square F Value Pr > F	R-Square	117 5.0878974 0.0434863			DF Type III SS Mean Square F Value Pr > F 0.6914765 0.1382953 1.61 0.3077 ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6, 1996	0.0021742 0.02 0.8907 0.1382953 1.21 0.3101 0.0860629 0.75 0.5868 S for REP*TRT as an error term	Source DF Type I SS Mean Square F Value Pr > F	File:a:\43904821.out Page 13 4.782305 0.3385 7.0775 F
Dunnett's One-tailed T tests for variable: FWGHT NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control. Alpha= 0.05 Confidence= 0.95 df= 5 MSE= 0.095201 Critical Value of Dunnett's T= 2.996 Comparisons significant at the 0.05 level are indicated by '***'.	ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6, 1996 General Linear Models Procedure	Simultaneous Simultaneous Lower Difference Upper TRT Confidence Between Confidence Comparison Limit Means Limit II - solv -0.08461 0.17747 0.43955 I - solv -0.13356 0.11886 0.37127 I - solv -0.33102 0.03182 0.39466 III - solv -0.26044 0.00455 0.26953 cont - solv -0.25208 0.00034 0.25275	Alpha= 0.05 Confidence= 0.95 df= 5 MSE= 0.086063 Critical Value of Dunnett's T= 2.996 Comparisons significant at the 0.05 level are indicated by '***'.	NOTE: This tests controls the type I experimentwise error for comparisons of all treatments against a control.	General Linear Models Procedure Dunnett's One-tailed T tests for variable: FLNGTH	ANALYSIS USING TRT*REP INTERACTION AS THE ERROR TERM 13:38 Tuesday, August 6, 1996	NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.	I 1.00453297 1 0.9369 0.9660 0.8887 0.1304 0.7456 II 0.99704167 2 0.9369 0.9084 0.9084 0.1691 0.8169 III 1.00854701 3 0.9660 0.9084 0.8685 0.1417 0.7288 IV 0.98625000 4 0.8887 0.9362 0.8685 0.3303 0.9265 cont 0.85216667 5 0.1304 0.1691 0.1417 0.3303 0.2329 solv 0.97384615 6 0.7456 0.8169 0.7288 0.9265 0.2329 .	Probabilities calculated using the Type III REP*IRT as an Error term Pr > T HO: LSMEAN(i)=LSMEAN(j) i/j 1 2 5	7.13791209 1 0.4478 0.2719 0.4902 0.1645 0. 7.2083333 2 0.4478 0.1099 0.2510 0.0662 0. 7.03290598 3 0.2719 0.1099 0.8938 0.7778 0. 7.05000000 4 0.4902 0.2510 0.8938 0.7340 0. 7.007500000 5 0.1645 0.0662 0.7778 0.7340 0. 7.02564103 6 0.2441 0.0992 0.9388 0.8492 0.8399 0.	File:a:\43904821.out Page 14 TRT FLNGTH Pr > T HO: LSMEAN(i)=LSMEAN(j) LSMEAN i/j 1 2 3 4 5 6

_		File:a:\4
I - solv II - solv IV - solv	TRT Comparison	File:a:\43904821.out
-0.23780 -0.25324 -0.36991 -0.28715 -0.38521		Page 15
0.02768 0.02545 0.01170 -0.01150 -0.11973	Difference Between Means	
0.29315 0.30415 0.39332 0.26415 0.14575	Simultaneous Upper Confidence Limit	

MRID No. 439048-22

DATA EVALUATION RECORD § 72-1 -- ACUTE LC₅₀ TEST WITH A COLDWATER FISH

CHEMICAL: Isoxaflutole PC Code No.: 123000

2. TEST MATERIAL: RPA 202248 Purity: 99.9%

CITATION: 3.

> Author: A. Mc Elligott

Title: RPA 202248: Acute Toxicity (96 Hours) to Rainbow Trout (Oncorhynchus mykiss) Under

Semi-Static Conditions

November 3, 1995 Study Completion Date:

> Laboratory: Rhône-Poulenc Agrochimie, Centre de

> > Recherche, Sophia Antipolis, France

Rhône-Poulenc Agrochimie, Lyon, France Sponsor:

<u>Laboratory Report ID:</u> SA 95141

439048-22 MRID No.: DP Barcode: D222982

REVIEWED BY: Max A. Feken, M.S., Environmental Toxicologist,

KBN Engineering and Applied Sciences, Inc.,

Signature: 1/2 feb. Date: 8/8/96

Pim Kosalwat, Ph.D., Senior Scientist, KBN Engineering and Applied Sciences, Inc., APPROVED BY:

signature: P. Kosalwat Date: 8/8/96

5. APPROVED BY:

STUDY PARAMETERS:

Age or Size of Test Organism:

Average of 1.1 g

Definitive Test Duration:

96 hours

Study Method:

Static renewal

Type of Concentrations:

Mean measured

CONCLUSIONS: This study is scientifically sound and meets the guideline requirements for an acute toxicity test using a freshwater fish. The 96-hour LC₅₀ for rainbow trout exposed to RPA 202248 was >30.6 ppm, the solubility limit of this compound under the conditions of this test. The test material is classified, at worst, as slightly toxic to rainbow trout.

Results Synopsis

 LC_{50} : >30.6 ppm 95% C.I.: N/A

NOEC: 30.6 ppm Probit Slope: N/A

8. ADEQUACY OF THE STUDY

A. Classification: Core

B. Rationale: Although the highest test concentration was lower than 100 ppm and a more precise LC₅₀ was not obtained, the test was apparently conducted at the water solubility limit for this test material under the conditions of the test.

C. Repairability: N/A

9. GUIDELINE DEVIATIONS:

- Tap water filtered through activated charcoal was used to prepare the test solutions. The guidelines discourage the use of dechlorinated water since removal of chlorine is rarely complete. However, no control mortality occurred in this test.
- Each test concentration was 50% of the next highest concentration; 60% is recommended by the SEP.

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
Species Preferred species is the rainbow trout (Oncorhynchus mykiss)	Oncorhynchus mykiss
Mean Weight 0.5-5.0 g	1.1 g
<u>Mean Standard Length</u> Longest not > 2x shortest	Mean (total length): 5.0 cm Range: 4.5 - 5.3 cm
Supplier	Pisciculture TALLET, Saumane, France

Guideline Criteria	Reported Information
All fish from same source?	Yes
All fish from the same year class?	Yes

B. Source/Acclimation

Guideline Criteria	Reported Information				
Acclimation Period Minimum 14 days	At least 14 days				
Wild caught organisms were quarantined for 7 days?	N/A				
Were there signs of disease or injury?	None				
If treated for disease, was there no sign of the disease remaining during the 48 hours prior to testing?	N/A				
<u>Feeding</u> No feeding during the study	Fish were not fed during the study				
<pre>Pretest Mortality < 3% mortality 48 hours prior to testing</pre>	2.3% mortality in stock culture during the 7 days prior to testing.				

C. Test System

Guideline Criteria	Reported Information
Source of dilution water Soft reconstituted water or water from a natural source, not dechlorinated tap water	Activated-charcoal filtered tap water diluted with deionized water
Does water support test ani- mals without observable signs of stress?	Yes
<u>Water Temperature</u> 12°C	11.9 - 13.0°C
pH Prefer 7.2 to 7.6	6.7 - 7.7

Guideline Criteria	Reported Information
<pre>Dissolved Oxygen Static: ≥ 60% during 1st 48 hrs and ≥ 40% during 2nd 48 hrs, flow-through: ≥ 60%</pre>	>74% for the entire test
Total Hardness Prefer 40 to 200 mg/L as CaCO ₃	$39-40 \text{ mg/L as } \text{CaCO}_3.$
Test Aquaria 1. Material: Glass or stainless steel 2. Size: Volume of 18.9 L (5 gal) or 30 x 60 x 30 cm 3. Fill volume: 15-30 L of solution	1. Glass 2. 30 L 3. 20 L
Type of Dilution System Must provide reproducible supply of toxicant	N/A
Flow Rate Consistent flow rate of 5-10 vol/24 hours, meter systems calibrated before study and checked twice daily during test period	N/A
Biomass Loading Rate Static: ≤ 0.8 g/L at ≤ 17°C, ≤ 0.5 g/L at > 17°C; flow- through: ≤ 1 g/L/day	0.56 g/L
<pre>Photoperiod 16 hours light, 8 hours dark</pre>	16 hours light, 8 hours dark
<pre>Solvents Not to exceed 0.5 mL/L for static tests or 0.1 mL/L for flow-through tests</pre>	Dimethyl-formamide (0.1 mg/L)

D. Test Design

Guideline Criteria	Reported Information
Range Finding Test If LC ₅₀ >100 mg/L with 30 fish, then no definitive test is required.	Yes; 0.3, 1.0, 3.1, 10.0, and 32.0 mg/L. No mortality or adverse effects were observed at any concentration. The highest concentration (32.0 mg/L) was above the visual limit of aqueous solubility of the test compound.
Nominal Concentrations of Definitive Test Control & 5 treatment levels; dosage should be 60% of the next highest concentration; concentrations should be in a geometric series	Control, solvent control, 3.8, 7.5, 15, 30, and 60 mg/L.
Number of Test Organisms Minimum 10/level, may be di- vided among containers	20 per treatment level; 10 per replicate
Test organisms randomly or impartially assigned to test vessels?	Yes
Biological observations made every 24 hours?	Yes
<pre>Water Parameter Measurements 1. Temperature Measured constantly or, if water baths are used, every 6 hrs, may not vary > 1°C 2. DO and pH Measured at beginning of test and ever 48 h in the high, medium, and low doses and in the control</pre>	Temperature was measured continuously in one test aquarium and every 24 hrs at each treatment level. DO and pH were measured every 24 hrs at all dose levels.
Chemical Analysis Needed if solutions were aerated, if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used	Chemical analysis was performed on all fresh and old (48 hrs) test solutions and controls at test initiation and every 48 hrs.

12. REPORTED RESULTS:

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
Recovery of Chemical	Analytical: 97-102% Test: 97-105% (14-99% for the highest treatment level)
Control Mortality Not more than 10% control organisms may die or show abnormal behavior.	0% mortality
Raw data included?	Yes
Signs of toxicity (if any) were described?	Yes

Mortality

MOLCULICY		. 2000.00 1 10 0			1 1			
Concentrat	cion (mg/L)		Cum	Cumulative Number Dead				
		Number of		Hour of Study				
Nominal	Mean Measured	Fish	24	48	72	96		
Control	***	20	0	0	0	0		
Solvent		20	0	0	0	0		
3.8	3.9	20	0	0	0	0		
7.5	7.7	20	0	0	0	0		
15.0	15.0	20	0	0	0	0		
30.0	30.6	20	0	О	0	0		
60.0	33.8	20	0	0	0	0		

Other Significant Results: Undissolved particles were observed on the bottom of the 30 mg/L and 60 mg/L test aquaria. All particles had solubilized by the end of each 48-hour exposure period at the 30 mg/L level. Particles remained present in both replicates of the highest treatment

level (60 mg/L) throughout the test. Occasional signs of lethargy and pigmentation effects were observed in some fish at most of the test levels and controls.

B. Statistical Results

Method: Visual inspection

96-hr LC₅₀: >33.8 mg/L 95% C.I.: N/A

Probit Slope: N/A NOEC: 33.8 mg/L

13. <u>VERIFICATION OF STATISTICAL RESULTS</u>:

Method: Visual inspection

96-hr LC₅₀: >30.6 mg/L 95% C.I.: N/A

Probit Slope: N/A NOEC: 30.6 mg/L

14. REVIEWER'S COMMENTS: Percent recovery of the test material at the highest treatment level ranged from 13.8 to 99.0%. Since insoluble fragments of test compound remained throughout the test period, the nominal concentration of 60.0 mg/L was obviously well above the limit of solubility for this compound under these test conditions. Undissolved test material was also present throughout the test period in the highest concentration. The 30.0 mg/L nominal concentration was approximately equal to the limit of solubility and was subsequently treated as the highest test level by the reviewer.

This study is scientifically sound and meets the guideline requirements for an acute freshwater fish toxicity test. The 96-hour LC₅₀ for rainbow trout exposed to RPA 202248 was >30.6 ppm, the limit of solubility for this compound under the conditions of this test. The test material is classified, at worst, as slightly toxic to rainbow trout. The NOEC was determined to be 30.6 ppm. This study is classified as **Core**.

DATA EVALUATION RECORD § 72-2 - ACUTE LC₅₀ TEST WITH A FRESHWATER INVERTEBRATE

CHEMICAL: Isoxaflutole PC Code No.: 123000

<u>Purity</u>: 99.9% 2. TEST MATERIAL: RPA 202248

CITATION: 3.

> A. Mc Elligott Author:

<u>Title:</u> RPA 202248: Acute Toxicity (48 Hours) to

Daphnids (Daphnia magna) Under Semi-

Static Conditions

November 30, 1995 Study Completion Date:

> Rhône-Poulenc Agrochimie, Centre de Laboratory:

Recherche, Sophia Antipolis, France

Rhône-Poulenc Agrochimie, Lyon, France Sponsor:

<u>Laboratory Report ID:</u> SA 95142

> 439048-23 MRID No.: DP Barcode: D222982

Max Feken, M.S., Environmental Toxicologist, REVIEWED BY:

KBN Engineering and Applied Sciences, Inc.,

Date: 8/8/96

Pim Kosalwat, Ph.D., Senior Scientist, APPROVED BY:

by tehn

KBN Engineering and Applied Sciences, Inc.,

signature: P-Kosalwat

Date: 8/8/96

5. APPROVED BY:

signature: Lenie listelle

Date: 9 13/96

STUDY PARAMETERS:

Age of Test Organism: <24 hours Definitive Test Duration: 48 hours

Study Method: Static renewal

Type of Concentrations: Mean measured

CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an acute toxicity study using freshwater invertebrates. The 96-hour LC₅₀ for Daphnia magna exposed to RPA 202248 was >59.6 ppm, the limit of solubility for this compound under the conditions of this test. The test material is classified, at worst, as slightly toxic to Daphnia magna.

Results Synopsis

EC₅₀: >59.6 ppm 95% C.I.: N/A

NOEC: 59.6 ppm Probit Slope: N/A

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: Although the highest test concentration was less than 100 ppm and a more precise EC₅₀ was not determined, the test was apparently conducted at the maximum water solubility of the test compound under the conditions of this test.

C. Repairability: N/A

9. **GUIDELINE DEVIATIONS:** No significant deviations.

10. **SUBMISSION PURPOSE:**

11. MATERIALS AND METHODS:

A. Test Organisms:

Guideline Criteria	Reported Information
<u>Species</u> Preferred species is Daphnia magna	Daphnia magna
All organisms are approxi- mately the same size and weight?	Not reported
Life Stage Daphnids: 1 st instar (<24 h). Amphipods, stoneflies, and mayflies: 2 nd instar. Midges: 2 nd & 3 rd instar.	1 st instar (<24 h)
Supplier	In-house cultures
All organisms from the same source?	Yes

B. Source/Acclimation:

Guideline Criteria	Reported Information
<u>Acclimation Period</u> Minimum 7 days	N/A
Wild caught organisms were quarantined for 7 days?	N/A
Were there signs of disease or injury?	Not reported
If treated for disease, was there no sign of the disease remaining during the 48 hours prior to testing?	N/A
Feeding No feeding during the study.	No feeding
Pretest Mortality No more than 3% mortality 48 hours prior to testing.	Not reported

C. <u>Test System</u>:

Guideline Criteria	Reported Information
Source of dilution water Soft reconstituted water or water from a natural source, not dechlorinated tap water.	Reconstituted hard water prepared from a reverse-osmosed, de-ionized water which was also filtered through activated charcoal
Does water support test ani- mals without observable signs of stress?	Yes
Water Temperature Daphnia: 20°C Amphipods and mayflies: 17°C Midges and mayflies: 22°C Stoneflies: 12°C	19.3 - 20.8°C
pH Prefer 7.2 to 7.6.	7.2 - 7.9

Guideline Criteria	Reported Information
Dissolved Oxygen Static: ≥ 60% during 1st 48 h and ≥ 40% during 2nd 48 h, flow-through: ≥ 60%.	>93% throughout test
Total Hardness Prefer 40 to 200 mg/L as CaCO ₃ .	170 - 172 mg/L as CaCO ₃
Test Aquaria 1. Material: Glass or stainless steel. 2. Size: 250 mL (daphnids and midges) or 3.9 L (1 gal). 3. Fill volume: 200 mL (daphnids and midges) or 2-3 L.	Glass 250 mL 200 mL
Type of Dilution System Must provide reproducible supply of toxicant.	N/A
Flow Rate Consistent flow rate of 5-10 vol/24 hours, meter systems calibrated before study and checked twice daily during test period.	N/A
Biomass Loading Rate Static: ≤ 0.8 g/L at ≤ 17°C, ≤ 0.5 g/L at > 17°C; flow- through: ≤ 1 g/L/day.	1 daphnid/20 mL
<pre>Photoperiod 16 hours light, 8 hours dark.</pre>	16 hours light, 8 hours dark
<pre>Solvents Not to exceed 0.5 mL/L for static tests or 0.1 mL/L for flow-through tests.</pre>	Dimethyl formamide (0.1 mL/L)

.

D. <u>Test Design</u>:

Guideline Criteria	Reported Information
Range Finding Test If LC ₅₀ >100 mg/L, then no definitive test is required.	Yes; however, the concentration range was not reported. EC ₅₀ was >50 mg/L.
Nominal Concentrations of Definitive Test Control & 5 treatment levels; a geometric series with each concentration being at least 60% of the next higher one.	Control, solvent control, 3.8, 7.5, 15.0, 30.0, and 60.0 mg/L.
Number of Test Organisms Minimum 20/level, may be divided among containers.	20 per treatment, 10 per replicate.
Test organisms randomly or impartially assigned to test vessels?	Yes
<pre>Water Parameter Measurements 1. Temperature Measured continuously or, if water baths are used, every 6 h, may not vary > 1°C. 2. DO and pH Measured at beginning of test and ever 48 h in the high, medium, and low doses and in the control.</pre>	Temperature, DO, and pH were measured initially, at the end of 24 h, and at test termination (48-h) for each treatment level. Temperature was also measured continuously in a dilution water sample located in the test area.
Chemical Analysis Needed if solutions were aerated, if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used	Fresh and old test solutions were measured initially, after 24 hours, and at test termination for each treatment level and controls.

12. REPORTED RESULTS:

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
Control Mortality Static: ≤10% Flow-through: ≤5%	0% mortality
Percent Recovery of Chemical	Analytical: 97-102% Test: 97-111%
Raw data included?	Yes

<u>Mortality</u>

Concentrat	ntration (mg/L) Cumulative Number Dead		666666. 3666666666666666666667. 786	
		of Daphnids	Hour of	Study
Nominal	Mean Measured		24	48
Control	<0.2	20	0	0
Solvent	<0.2	20	0	0
3.8	4.2	20	0	0
7.5	7.6	20	0	0
15.0	15.0	20	0	1
30.0	30.1	20	0	0
60.0	59.6	20	_0	0

Other Significant Results: Undissolved particles were observed in test solutions at the 60 mg/L treatment level during each 24-hour cycle of exposure.

B. Statistical Results

Method: Visual inspection

48-hr EC₅₀: >59.6 mg/L 95% C.I.: N/A

Probit Slope: N/A NOEC: 59.6 mg/L

13. VERIFICATION OF STATISTICAL RESULTS:

Method: Visual inspection

48-hr EC₅₀: >59.6 mg/L 95% C.I.: N/A

Probit Slope: N/A NOEC: 59.6 mg/L

14. REVIEWER'S COMMENTS: This study is scientifically sound, fulfills the guideline requirements for an acute toxicity study using freshwater invertebrates, and is classified as Core. The 96-hour LC₅₀ for Daphnia magna exposed to RPA 202248 was >59.6 ppm, the limit of solubility for this compound under the conditions of this test. The test material is classified, at worst, as slightly toxic to Daphnia magna. The NOEC was determined to be 59.6 ppm.

DATA EVALUATION RECORD § 72-3 - ACUTE LC₅₀ TEST WITH AN ESTUARINE/MARINE SHRIMP

CHEMICAL: Isoxaflutole PC Code No.: 123000

Purity: TEST MATERIAL: RPA 202248 99.9%

3. CITATION:

> Maura K. Collins Author:

Title: RPA 202248 - Acute Toxicity to Mysids

(Mysidopsis bahia) Under Static Renewal

Conditions

December 22, 1995 Study Completion Date:

> Laboratory: Springborn Laboratories, Inc., Wareham,

> > MA

Rhône-Poulenc Secteur Agro, Sophia Sponsor:

Antipolis, France

95-12-6271 <u>Laboratory Report ID:</u>

> 439048-24 MRID No.: D222982 DP Barcode:

Max Feken, M.S., Environmental Toxicologist, REVIEWED BY:

KBN Engineering and Applied Sciences, Inc.

Signature:

Date: 8/8/96

Pim Kosalwat, Ph.D., Senior Scientist, APPROVED BY:

KBN Engineering and Applied Sciences, Inc.

P. Kosalwat Date: 8/8/96 Signature:

APPROVED BY: 5.

Renie Costello Date: 913/96 Signature:

STUDY PARAMETERS: 6.

> Definitive Test Duration: 96 hours

Study Method: Static Renewal Type of Concentrations: Mean Measured

7. **CONCLUSIONS:** This study is scientifically sound and fulfills the guideline requirements. The 96-hour LC_{50} for mysid shrimp exposed to RPA 202248 was 3.6 ppm ai, which classifies RPA 202248 as moderately toxic to Mysidopsis bahia. was determined to be 0.83 ppm ai.

Results Synopsis

LC₅₀: 3.6 ppm ai 95% C.I.: 0.83 - 7.4 ppm ai

NOEC: 0.83 ppm ai Probit Slope: N/A

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

9. **GUIDELINE DEVIATIONS:**

1. The size of the test vessels (2.0 L) was less than recommended (3.9 L).

2. The temperature of the test solutions (24-26°C) was higher than recommended (22°C).

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
Species Preferred species are Mysidopsis bahia, Penaeus setiferus, P. duorarum, P. aztecus and Palaemonetes sp.	Mysidopsis bahia
<u>Age</u> Juvenile, mysids should be ≤ 24 hours old	<pre>≤ 24 hours old (from protocol; p.34)</pre>
<u>Supplier</u>	Springborn Laboratories, Inc., Wareham, MA
All shrimp are from same source?	Yes
All shrimp are from the same year class?	Yes

B. Source/Acclimation

Guideline Criteria	Reported Information
Acclimation Period minimum 10 days	N/A
Wild caught organisms were quarantined for 7 days?	N/A
Were there signs of disease or injury?	None reported
If treated for disease, was there no sign of the disease remaining during the 48 hours prior to testing?	N/A
Feeding No feeding during the study and no feeding for 24 hours before the beginning of the test if organisms are over 0.5 g each.	Mysids were fed brine shrimp nauplii daily during the exposure period.
<pre>Pretest Mortality <3% mortality 48 hours prior to testing</pre>	Not reported

C. Test System

Guideline Criteria	Reported Information
Source of dilution water Soft reconstituted water or water from a natural source, not dechlorinated tap water	Filtered seawater with the salinity adjusted to approximately 19 % using well water.
Does water support test ani- mals without observable signs of stress?	Yes
<pre>Salinity 30-34 % for marine (stenohal- ine) shrimp and 10-17 % for estuarine (euryhaline) shrimp, weekly range < 6%</pre>	18-21 ‰
Water Temperature Approx. 22 ± 1 °C	24-26°C

Guideline Criteria	Reported Information
<pre>pH 8.0-8.3 for marine (steno- haline) shrimp, 7.7-8.0 for estuarine (euryhaline) shrimp, monthly range < 0.8</pre>	7.2-7.7
<pre>Dissolved Oxygen Static: ≥ 60% during 1st 48 hrs and ≥ 40% during 2nd 48 hrs, Flow-through: ≥ 60%</pre>	\geq 62% during 1 st 48 hrs and \geq 51% during 2 nd 48 hrs
Total Organic Carbon	0.40 mg/L
<pre>Test Aquaria 1. Material: Glass or stainless steel 2. Size: 19.6 L is acceptable for organisms ≥ 0.5 g (e.g. pink shrimp, white shrimp, and brown shrimp), 3.9 L is acceptable for smaller organisms (e.g. mysids and grass shrimp). 3. Fill volume: 15 L is acceptable for organisms ≥ 0.5 g, 2-3 L is acceptable for smaller organisms.</pre>	 Glass 2. 2.0 L Fill volume of 1 L.
Type of Dilution System Must provide reproducible supply of toxicant	N/A
Flow Rate Consistent flow rate of 5-10 vol/24 hours, meter systems calibrated before study and checked twice daily during test period	N/A
Biomass Loading Rate Static: ≤ 0.8 g/L at ≤ 17°C, ≤ 0.5 g/L at > 17°C; flow- through: ≤ 1 g/L/day	1 mysid/100 ml
Photoperiod 16 hours light, 8 hours dark	16 h light, 8 h dark

Guideline Criteria	Reported Information
<pre>Solvents Not to exceed 0.5 mL/L for static tests or 0.1 mL/L for flow-through tests</pre>	Solvent: acetone Maximum conc.: 0.25 mL/L

D. Test Design

Guideline Criteria	Reported Information
Range Finding Test If LC ₅₀ >100 mg/L with 30 shrimp, then no definitive test is required.	1.0, 10, 40 and 100 mg ai/L; undissolved test material was observed in 10, 40, and 100 mg ai/L solutions. These same concentration levels had 40, 70, and 70% mortality, respectively. No mortality was observed at the 1.0 mg ai/L level.
Nominal Concentrations of Definitive Test Control & 5 treatment levels; a geometric series in which each concentration is at least 60% of the next higher one.	Control, solvent control, 1.0, 5.2, 8.6, 14, 24 and 40 mg ai/L.
Number of Test Organisms Minimum 20/level, may be divided among containers	20 per level, 10 per replicate
Test organisms randomly or impartially assigned to test vessels?	Mysids impartially distributed by twos to each vessel.
Biological observations made every 24 hours?	Yes
<pre>Water Parameter Measurements 1. Temperature Measured constantly or, if water baths are used, every 6 hrs, may not vary > 1°C 2. DO and pH Measured at beginning of test and ever 48 h in the high, medium, and low doses and in the control</pre>	 Temperature measured continuously in the water bath and daily in each test vessel. DO and pH were measured daily in each test vessel.

Guideline Criteria	Reported Information
Chemical Analysis needed if solutions were aerated, if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used	Yes, fresh and old test solutions were analyzed at test initiation, after 48 hours, and at termination.

12. REPORTED RESULTS:

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
Recovery of Chemical	75-87%
Control Mortality Not more than 10% of control organisms may die or show abnormal behavior.	0% in negative control and 5% in solvent control.
Raw data included?	Yes
Signs of toxicity (if any) were described?	Yes

Mortality

	Concentration Cumulative Number Dead (mg ai/L) Number			ead		
Mean	of Shrimp	Hour of Study				
Nominal	Measured	•	24	48	72	96
Control	<0.51	20	0	0	0	0
Solvent	<0.51	20	0	0	0	1
1.0	0.83	20	0	0	0	0
_5.2	4.5	20	0	0	0	12
8.6	7.4	20	0	3	14	20

	cration ai/L)	Number	Cum	ulative 1	Number D	ead
	Mean	of Shrimp		Hour of	Study	
Nominal	Measured		24	48	72	96
14	11	20	_ 0	6	17	19
24	20	20	· _ 0	9	17	19
40	33	20	3	11	17	20

Other Significant Results: Some undissolved test material was observed in the 11, 20, and 33 mg ai/L test solutions throughout the exposure period.

B. Statistical Results

Method: Nonlinear interpolation

96-hr LC₅₀: 3.7 mg ai/L 95% C.I.: 0.83 - 7.4 mg ai/L

Probit Slope: N/A NOEC: 0.83 mg ai/L

13. VERIFICATION OF STATISTICAL RESULTS:

Parameter	Result
Binomial Test LC ₅₀ (C.I.)	3.6 (0.83 - 7.4) ppm ai
Moving Average Angle LC ₅₀ (95% C.I.)	N/A
Probit LC ₅₀ (95% C.I.)	N/A
Probit Slope	N/A
NOEC	0.83 ppm ai

14. REVIEWER'S COMMENTS: This study is scientifically sound and meets the guideline requirements for an acute toxicity test using Mysidopsis bahia. Based on mean measured concentrations, the 96-hour LC₅₀ was 3.6 ppm ai, which classifies RPA 202248 as moderately toxic to mysid shrimp. This study is classified as Core.

NOTE: THERE WAS CONTROL MORTALITY, BUT AT LEAST ONE OF THE LOWER CONCENTRATIONS HAD ZERO MORTALITY. THEREFORE, ABBOTT'S CORRECTION IS NOT APPLICABLE.

MAX FEKEN RPA 202248 MYSIDOPSIS 07-31-96

*****	*****************************			
CONC.	NUMBER	NUMBER	PERCENT	BINOMIAL
	EXPOSED	DEAD	DEAD	PROB. (PERCENT)
7.4	20	20	100	9.536742E-05
4.5	20	12	60.00001	25.17223
.83	20	0	0	9.536742E-05

THE BINOMIAL TEST SHOWS THAT .83 AND 7.4 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 3.646719

WHEN THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT DEAD IS BETWEEN 0 AND 100, NEITHER THE MOVING AVERAGE NOR THE PROBIT METHOD CAN GIVE ANY STATISTICALLY SOUND RESULTS.

DATA EVALUATION RECORD § 72-1 -- ACUTE LC₅₀ TEST WITH A COLDWATER FISH

1. CHEMICAL: Isoxaflutole PC Code No.: 123000

2. TEST MATERIAL: RPA 203328 Purity: 98.9%

3. CITATION:

Author: Mark W. Machado

Title: RPA 203328 - Acute Toxicity to Rainbow

Trout (Oncorhynchus mykiss) Under Flow-

Through Conditions

Study Completion Date: June 22, 1995

Laboratory: Springborn Laboratories, Inc., Wareham,

MA

Sponsor: Rhône-Poulenc Ag Company, Research

Triangle Park, NC

<u>Laboratory Report ID</u>: 95-5-5861

MRID No.: 439048-25 DP Barcode: D222982

4. REVIEWED BY: Max A. Feken, M.S., Environmental Toxicologist,

KBN Engineering and Applied Sciences, Inc.,

Signature:

ly flle

Date: 8/8/9/6

APPROVED BY: Pim Kosalwat, Ph.D., Senior Scientist,

KBN Engineering and Applied Sciences, Inc.,

signature: P. Kosalwat

Date: 8/8/96

5. APPROVED BY:

Signature: Longs Confelle

Date: 913191

6. STUDY PARAMETERS:

Age or Size of Test Organism:

Average of 0.59 g

Definitive Test Duration:

96 hours

Study Method:

Flow-Through

Type of Concentrations: Mean measured

7. <u>CONCLUSIONS</u>: This study is scientifically sound and meets the guideline requirements for an acute toxicity test using a freshwater fish. The 96-hour LC₅₀ for rainbow trout exposed to RPA 203328 was 160 ppm ai, which classifies this compound as practically non-toxic to *Oncorhynchus mykiss*.

Results Synopsis

LC₅₀: 160 ppm ai 95% C.I.: 130 - 210 ppm ai

NOEC: 130 ppm ai Probit Slope: N/A

8. ADEQUACY OF THE STUDY:

A. Classification: Core

B. Rationale: N/A

C. Repairability: N/A

9. **GUIDELINE DEVIATIONS**:

1. The pH of the test solutions (3.4 - 7.1) was lower than recommended (7.2 - 7.6).

- 2. The concentration of solvent in the solvent control and treatment solutions (0.5 mL/L) was greater than recommended (0.1 mL/L) for a flow-through test.
- 3. The size of the aquaria (39 \times 20 \times 25 cm) in this test was smaller than recommended (30 \times 60 \times 30 cm).

10. SUBMISSION PURPOSE:

11. MATERIALS AND METHODS:

A. Test Organisms

Guideline Criteria	Reported Information
<u>Species</u> Preferred species is the rainbow trout (Oncorhynchus mykiss)	Oncorhynchus mykiss
Mean Weight 0.5-5.0 g	0.59 g
<u>Mean Standard Length</u> Longest not > 2x shortest	Mean (total length): 41 mm Range: 35 - 45 mm
<u>Supplier</u>	Blue Stream Trout Hatchery, Barnstable, MA
All fish from same source?	Yes

Guideline Criteria	Reported Information
All fish from the same year class?	Yes

B. Source/Acclimation

Guideline Criteria	Reported Information
<u>Acclimation Period</u> Minimum 14 days	At least 14 days
Wild caught organisms were quarantined for 7 days?	N/A
Were there signs of disease or injury?	None
If treated for disease, was there no sign of the disease remaining during the 48 hours prior to testing?	N/A
Feeding No feeding during the study	Fish were not fed during the study
<pre>Pretest Mortality < 3% mortality 48 hours prior to testing</pre>	0.14% mortality in the test fish population during 48 hours prior to testing.

C. Test System

Guideline Criteria	Reported Information
Source of dilution water Soft reconstituted water or water from a natural source, not dechlorinated tap water	Soft well water periodically sampled and analyzed for contaminants
Does water support test ani- mals without observable signs of stress?	Yes
<u>Water Temperature</u> 12°C	11 - 13°C

Guideline Criteria	Reported Information
pH Prefer 7.2 to 7.6	Controls: 7.2 - 7.6 26 mg ai/L: 6.8 - 7.1 43 mg ai/L: 6.7 - 7.0 72 mg ai/L: 6.4 - 7.3 120 mg ai/L: 4.6 - 6.5 200 mg ai/L: 3.4 - 3.8
<pre>Dissolved Oxygen Static: ≥ 60% during 1st 48 hrs and ≥ 40% during 2nd 48 hrs, flow-through: ≥ 60%</pre>	≥80% for the entire test
Total Hardness Prefer 40 to 200 mg/L as CaCO ₃	$32-38$ mg/L as $CaCO_3$.
Test Aquaria 1. Material: Glass or stainless steel 2. Size: Volume of 18.9 L (5 gal) or 30 x 60 x 30 cm 3. Fill volume: 15-30 L of solution	1. Glass 2. 39 x 20 x 25 cm 3. 11 L
Type of Dilution System Must provide reproducible supply of toxicant	Intermittent-flow proportional diluter
Flow Rate Consistent flow rate of 5-10 vol/24 hours, meter systems calibrated before study and checked twice daily during test period	6.9 volume replacements every 24 hours
Biomass Loading Rate Static: ≤ 0.8 g/L at ≤ 17°C, ≤ 0.5 g/L at > 17°C; flow- through: ≤ 1 g/L/day	0.078 g/L
<pre>Photoperiod 16 hours light, 8 hours dark</pre>	16 hours light, 8 hours dark
<pre>Solvents Not to exceed 0.5 mL/L for static tests or 0.1 mL/L for flow-through tests</pre>	Acetone (0.5 mL/L)

D. Test Design

Guideline Criteria	Reported Information
Range Finding Test If LC ₅₀ >100 mg/L with 30 fish, then no definitive test is required.	Yes; 26, 43, 72, 120, and 200 mg ai/L. All fish died at the highest level (200 mg ai/L). No mortality or adverse effects were observed at any other concentration.
Nominal Concentrations of Definitive Test Control & 5 treatment levels; dosage should be 60% of the next highest concentration; concentrations should be in a geometric series	Control, solvent control, 26, 43, 72, 120, and 200 mg ai/L.
Number of Test Organisms Minimum 10/level, may be divided among containers	20 per treatment level; 10 per replicate
Test organisms randomly or impartially assigned to test vessels?	Yes
Biological observations made every 24 hours?	Yes
Water Parameter Measurements 1. Temperature Measured constantly or, if water baths are used, every 6 hrs, may not vary > 1°C 2. DO and pH Measured at beginning of test and ever 48 h in the high, medium, and low doses and in the control	Temperature was measured continuously in one replicate of the control and every 24 hrs at each treatment level. DO and pH were measured every 24 hrs at all dose levels.
Chemical Analysis Needed if solutions were aerated, if chemical was volatile, insoluble, or known to absorb, if precipitate formed, if containers were not steel or glass, or if flow- through system was used	Chemical analysis was performed on all test solutions and controls at test initiation and termination.

12. REPORTED RESULTS:

A. General Results

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes
Recovery of Chemical	101-118%
Control Mortality Not more than 10% control organisms may die or show abnormal behavior.	0% mortality
Raw data included?	Yes
Signs of toxicity (if any) were described?	Yes

Mortality

Concentration (mg ai/L)		Number	Cumulative Number Dead			
		of Fish	7°	Hour of	Study	
Nominal	Mean Measured		24	48	72	96
Control	<4.7	20	0	0	0	0
Solvent	<4.7	20	0	0	0	0
26	31	20	0	0	0	0
43	43	20	0	0	0	0
72	74	20	0	0	0	0
120	130	20	_ 0	0	0	0
200	210	20	20	20	20	20

Other Significant Results: Complete mortality was observed at the highest treatment level (210 mg ai/L). No mortality or adverse effects were observed among fish exposed to the remaining treatment levels (31, 43, 74, and 130 mg ai/L) after 96 hours. The pH of the test solutions at the highest treatment level remained consistently low (3.4 - 3.8) throughout the test. A pH of <4.0 is considered lethal to

many freshwater fish according to EPA's "A review of the Red Book: Quality Criteria for Water" (April 1979).

B. Statistical Results

Method: Nonlinear interpolation

96-hr LC₅₀: 160 mg ai/L 95% C.I.: 130 - 210 mg ai/L

Probit Slope: N/A NOEC: 130 mg ai/L

13. <u>VERIFICATION OF STATISTICAL RESULTS</u>:

Method: Binomial test

96-hr LC₅₀: 165 mg ai/L 95% C.I.: 130 - 210 mg ai/L

Probit Slope: N/A NOEC: 130 mg ai/L

14. REVIEWER'S COMMENTS: The mortality associated with the highest treatment level was probably a result of the extremely low pH measured in the replicate solutions and not directly due to the test material. However, no mortalities or treatment related effects were observed in fish at a concentration (130 mg ai/L) greater than the maximum concentration required (100 mg/L) for a fish acute toxicity test.

This study is scientifically sound and meets the guideline requirements for an acute freshwater fish toxicity test. The 96-hour LC₅₀ for rainbow trout exposed to RPA 203328 was 165 ppm ai, which classifies this compound as practically non-toxic to *Oncorhynchus mykiss*. The NOEC was determined to be 130 ppm ai. This study is classified as **Core**.

MAF RPA 203328 ONCORHYNCHUS MYKISS 08-05-96

CONC.	NUMBER	NUMBER	PERCENT	BINOMIAL
	EXPOSED	DEAD	DEAD	PROB. (PERCENT)
210	20	20	100	9.536742E-05
130	20	0	0	9.536742E-05
74	20	0	0	9.536742E-05
43	20	0	0	9.536742E-05
31	20	0	0	9.536742E-05

THE BINOMIAL TEST SHOWS THAT 130 AND 210 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS, BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT.

AN APPROXIMATE LC50 FOR THIS SET OF DATA IS 165.227

WHEN THERE ARE LESS THAN TWO CONCENTRATIONS AT WHICH THE PERCENT DEAD IS BETWEEN 0 AND 100, NEITHER THE MOVING AVERAGE NOR THE PROBIT METHOD CAN GIVE ANY STATISTICALLY SOUND RESULTS.
